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Problem:

« EXxisting remote sensing platforms have limited ability to retrieve high-
resolution, unbiased water vapor profiles in the presence of clouds

* Problem recognized by NWP community (WMO, 2018):

“Critical atmospheric variables that are not adequately measured by current or
planned systems are temperature and humidity profiles of adequate vertical
resolution in cloudy areas.”

Proposed solution:

« Utilize range-resolved radar signal and frequency-dependent attenuation on
flank of 183 GHz water vapor absorption line, so-called differential absorption
radar (DAR)

« Microwave analog of differential absorption lidar (DIAL) — but can measure
inside clouds (complementary observations)
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 Differential reflectivity between two closely spaced frequencies proportional to
absorbing gas density (integrated)
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« Assumption: Reflectivity and extinction from hydrometeors independent of
frequency

» Frequency dependence from hardware cancels out (common mode)
» Airborne/spaceborne platform = Surface echoes (total column water)
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G-band atmospheric radars
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G band atmospheric radars: new frontiers in cloud physics
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The present work discusses the potential of G band (fre-
quency between 110 and 300 GHz) Doppler radars in com-
bination with lower frequencies to further improve the re-
trievals of microphysical properties. Our results show that,
thanks to a larger dynamic range in dual-wavelength re-
flectivity, dual-wavelength attenuation and dual-wavelength
Doppler velocity (with respect to a Rayleigh reference), the
inclusion of frequencies in the G band can significantly im-
prove current profiling capabilities in three key areas: bound-
ary layer clouds, cirrus and mid-level ice clouds, and precip-
itating snow.

remote sensing. There have only been a few examples of
cloud radars operating at 140-215 GHz in the past (Nemarich
et al., 1988; Mead et al., 1989; Wallace, 1988). Such in-
struments used an extended interaction klystron (EIK), op-
erated as a free running oscillator. The sensitivity was lim-
ited as this approach necessitated short pulses, incoherent
operation without Doppler and wide receiver bandwidths
to accommodate frequency drift. Since the early work of

and Lhermitte (1990) there has been little discussion in the
last 20 years on the advantages of radars operating at G band.
Today, several of the technological challenges that made the
development of radar in G band in the past a risky proposi-
tion are now removed thanks to technological breakthroughs
(Durden et al., 2011). Thus, it is timely to revisit the topic of
the potential applications of G band radars in cloud research.
Here, we state their added value in cloud research when op-
erated in ground-based super-sites complementing existing
cloud radar facilities. G band radars could be potentially

A. Battaglia et al., Atmos. Meas. Tech., 7, 1527-1546, https://doi.org/10.5194/amt-7-1527-2014, 2014.
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*  Sensitivity to upper-tropospheric water
vapor (ice clouds)

< ¢ Strong attenuation in planetary boundary
layer (PBL)

*  Transmission prohibited (passive sensors)

*  Lower absolute absorption = sensitivity to
PBL water vapor

*  Profiling (PBL clouds/precipitation) and
total column water measurement
capabilities

*  Fewer transmission restrictions
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Instrument heritage at JPL

Frequency-modulated continuous-wave (FMCW) radar for security imaging
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Extensive THz FMCW radar
R&D at JPL for security
imaging applications

NASA ESTO funded effort for
high-power solid-state sources
near 183 GHz

State-of-the-art InP low-noise
amplifiers developed for
millimeter-wave radiometry and
heterodyne spectroscopy
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Ground testing setup

Radar front end
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Rain/cloud field tests @ JPL

Precipitating clouds
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Radar parameters:
* Radar pointing 30° above
horizontal

N = 2000 pulses at each of
12 Tx frequencies

* Pulse (i.e. chirp) time of 1
ms

* Total meas. time = 25 sec
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October 3, 2018 @ JPL — Clouds detected beyond 8 km in height

Zenith pointing cloud/rain profiles for f=167.0 GHz
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Deployment of VIPR at Scripps in collaboration with the Center for Western
Weather and Water Extremes (Radiosonde validation) — Dec. 5, 2018

Cloud/rain profiles for f=167.0 GHz
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Deployment of VIPR at Scripps in collaboration with the Center for Western
Weather and Water Extremes (Radiosonde validation) — Dec. 5, 2018
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NASA

Past and present:

» G-Band differential absorption radar proof-of-concept instrument assembled and
preliminary field testing successful

« First in new generation of solid-state G-band cloud radars

« Humidity retrieval algorithm implemented, yielding profiles with 200 m resolution
and high-SNR precision of 0.6 g/m3(R. Roy et al. Atmos. Meas. Tech. 2018)

» Deployment of aircraft-compatible system at Scripps for validation — analysis
currently ongoing

Future outlook and prospects for space:
« Aircraft deployment and investigation of total column water measurements
« Humidity profiling from space with order 100 W transmitter (technical challenge)

« Lower power transmitter (1-10 W) can perform TCWV measurements with
ubiquitous temporal, surface, and cloud coverage

» Opportunity for upper-tropospheric humidity sounding using the strong water
vapor line at 380 GHz
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380 GHz DAR humidity sounding

2-way zenith attenuation (dB)

nadir 2-way atmospheric attenuation * No transmission restrictions

104 ¢

* Primary sensitivity to upper-
tropospheric water vapor

« Proximity of O, line opens possibility
for simultaneous temperature
sounding

« Example application: profile
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Thank you for your
attention

Questions?

Thank you to NASA ESTO for
funding the project.
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Connection to the Decadal Survey

Clouds,
Convection, and
Precipitation

 —

Atmospheric
Winds

Planetary
Boundary Layer

 —

Surface

Topography and

Vegetation

Coupled cloud-precipitation state and
dynamics for monitoring global
hydrological cycle and understanding
contributing processes including cloud
feedback

3D winds in troposphere/PBL for
transport of pollutants/carbon/aerosol and
water vapor, wind energy, cloud dynamics
and convection, and large-scale circulation

Diurnal 3D PBL thermodynamic
properties and 2D PBL structure to
understand the impact of PBL processes on
weather and AQ through high vertical and

temporal profiling of PBL temperature,
moisture and heights

High-resolution global topography
including bare surface land topography ice
topography, vegetation structure, and
shallow water bathymetry

Radar(s), with multi-frequency
passive microwave and sub-mm

radiometer X

Active sensing (lidar, radar,
scatterometer); or passive iImagery
or radiometry-based atmos. motion
vectors (AMVs) tracking; or
lidar**

Microwave, hyperspectral IR
sounder(s) (e.g., in geo or small sat
constellation), GPS radio
occultation for diurnal PBL
temperature and humidity and
heights; water vapor profiling
DIAL lidar; and lidar** for PBL
height

Radar; or lidar**

X
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Rain/cloud field tests @ JPL

* Radar pointing 30° above
horizontal

* N = 2000 chirps (1 ms) at
each of 12 Tx frequencies
« Total meas. time = 25 sec
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170 GHz FMCW radar block diagram
: fo= 167 GHz

« Transmitter tunable from _ G .
167 to 174.8 GHz frx = 30.5 GHz - 60 MHz chirp
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» Differential measurement derived from ratio of radar echo power at two different
ranges:

T2
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One-way optical depth

« But the power we detect is the sum of the echo power plus the background noise
power:

Pd(raf):PG(raf)+Pn(7ﬂaf)

 Note:

P,(r, f) # constant = have to acquire and subtract true
background noise floor — otherwise clear
low-humidity bias for low-SNR

— Ripple in the radar IF

spectrum
— Changing scene brightness

temperature
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— Acquire cloud/rain signal spectrum and background noise floor
simultaneously by using bidirectional chirp (triangle wave)

A Transmitted chirp
>
e AN _ .
=T s Received chirp
og
L
___________________ time
of o1 7 T
-10 -10
o -20 o) -20
£ -30 £ -30
& &
o -40} o -40}
=50 =50 \
-0 -60 i R —
4.5 5.0 55 4.5 5.0 55
IF Frequency (MHz) IF Frequency (MHz)




Jet Propulsion Laborator . : .
@Ca“mmiaﬁ:sﬂ:ute of Technolog‘y' Background noise floor considerations

—~ 07 _ ) —— Pp—P
0 | Noise subtraction oo N
G \ ) — Pp
o —10- \ important even
S for modest SNR P
c —201 iy
= Sy
S 30 —
Q
QO
0
5 —40
5
& —50-
500 1000 1500 2000
Range (m)




